Fast and robust ancestry prediction using principal component analysis
نویسندگان
چکیده
منابع مشابه
FRPCA: Fast Robust Principal Component Analysis
While the performance of Robust Principal Component Analysis (RPCA), in terms of the recovered low-rank matrices, is quite satisfactory to many applications, the time efficiency is not, especially for scalable data. We propose to solve this problem using a novel fast incremental RPCA (FRPCA) approach. The low rank matrices of the incrementally-observed data are estimated using a convex optimiza...
متن کاملRobust Principal Component Analysis Using Statistical Estimators
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-centering method and reestimate the covariance matrix using robust statistic techniques such as median, robust scaling which is a booster to datacente...
متن کاملRobust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...
متن کاملRobust Stochastic Principal Component Analysis
We consider the problem of finding lower dimensional subspaces in the presence of outliers and noise in the online setting. In particular, we extend previous batch formulations of robust PCA to the stochastic setting with minimal storage requirements and runtime complexity. We introduce three novel stochastic approximation algorithms for robust PCA that are extensions of standard algorithms for...
متن کاملROBUST PRINCIPAL COMPONENT ANALYSIS? By
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2020
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btaa152